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Abstract

This study represents a contribution to the local behavior of the solutions of the governing equations of elastostatics
in the vicinity of corners. It contains an asymptotic investigation — within both the linear and two special nonlinear
theories of plane strain — of the deformation field near a corner point that separates a free and a fixed part of the
boundary. Our computations confirm that the asymptotic solutions represent the local behaviors of equilibrium states
very close to the corner. In this neighborhood the linear and nonlinear theories predict very different behavior. Away
from the corner the deformation gradient becomes small and the asymptotic solution in the nonlinear theory becomes —
expectedly — not valid. However, in an intermediate region our numerical results obtained from both the linear and
nonlinear theories show striking similarities and predict a novel behavior of the free surface. © 2001 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

In classical linear elastostatics, a solution of the governing equations can have serious irregularities at the
boundary of a domain. In particular, the displacement gradient field can be singular at boundaries con-
taining corners. Such singularities are outside the range of application of the theory because they contradict
the assumption of small gradients upon which the theory is founded. Nevertheless, the study of the linear
theory reveals some interesting aspects that can be used in the study of the asymptotic behavior of solutions
in certain nonlinear theories.

The displacement field « in plane linear elastostatics has the asymptotic expansion

k-1

u(R,0)~ > > R"log'Rv,(0) (1)

Rb;>0 k=0
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in the vicinity of a corner, where (R, @) are the polar coordinates with origin at the corner, v are infinitely
differentiable complex functions, and b; are complex roots with multiplicity k; of a transcendental equation
A(b;) = 0. The works of Kondrat’ev (1967), Kondrat’ev and Oleinik (1983), Grisvard (1985, 1986, 1992),
Dauge (1988), and Leguillon and Sanchez-Paléncia (1987) are standard references in this area. At a corner
where homogeneous traction and displacement boundary conditions are prescribed on adjacent sides, the
transcendental equation is of the form

—(1 + x?) — 2Kcos (2ab) + 2(1 — cos (2x))b* if o # =,
K — e2in(b=1/2) if 0= T,

A(b) = { (2)

where « is a material constant, 1 < k < 3, and « is the angle of the corner. This expression is well-known in
the literature and has been studied by Bogy (1971) and Reitich (1991). Clearly, if Rb < 1, the gradient of
the displacement field is unbounded at the origin, which limits the applicability of the classical linear theory.
Also, if 3b # 0 then infinite oscillations of the form cos(3blogr) and sin(Iblogr) are predicted in the
vicinity of the corner.

Singularities of the oscillatory type in the stress field at a crack tip have been known for years and were
reported by Williams (1959) and Rice and Sih (1965) in their investigations of half-planes of dissimilar
materials bonded over portions of their common boundary. Also, Knowles and Sternberg (1975,1977) (and
authors cited therein) investigated the anomalous oscillatory behavior in two classical singular problems of
elasticity theory. The self-intersection of matter found in one of these problems and the change of sign
of the contact force found in the other, caused them to conclude that these problems have no solution
within the conventional linear setting. They then showed that for a particular class of nonlinear elastic
materials the anomalous behavior, which is related to a spurious self-intersection anomaly, could be re-
solved. We comment more on their approach later in this section.

In an attempt to resolve the overlapping of material at the crack interface that divides two different
isotropic, homogeneous linear elastic bodies that occupy complementary semi-infinite half-spaces in R?,
Comninou (1977,1978) and Comninou and Schmueser (1979) imposed the closed crack tip condition, i.e.,
the condition that the deformed crack faces remain in contact in a neighborhood of the crack tips. Their
computations showed the existence of two contact zones, one at each tip, the length of which depended very
strongly on the remotely applied loading conditions. Later, Aravas and Sharma (1991) questioned this
work and showed that when one of the half-spaces is rigid the asymptotic solution based on the closed
crack tip condition predicts self-intersection, contrary to the work of Comninou et al. They observed that if
the length of the contact zone is small compared to the crack length, the traditional solution, which is based
on the assumption of traction-free crack faces and does not employ the closed crack tip condition, is still
valid over distances that are larger than the contact zone size but still small compared to the crack length.

Our goal in this paper is to use a representative nonlinear theory of elasticity to gain understanding of
the behavior of the deformation field in the vicinity of points on the boundary of an elastic body where the
boundary conditions are not smooth. In particular, stress-displacement boundary conditions are imposed
along the straight boundary of the half-plane. Our previous work, Aguiar and Fosdick (2000), represents a
starting point toward this end. In that work we introduced a computational framework for the investi-
gation of the corner behavior of solutions to plane problems in incompressible nonlinear elasticity theory.
Our idea was to use a one-parameter family of compressible elastic materials so that, both, the constitu-
tive relation reduces to that of a given incompressible material and the constraint of incompressibility is
recovered as the parameter tends to zero. Our finite element method was based on the classical Galerkin
formulation and it used a continuation technique that is based on the Newton—Raphson procedure. This
employed the idea of an arc length continuation in order to construct a one-parameter continuous path of
states through the solution of a nonlinear problem, starting from a known solution to a more elementary
problem. We shall apply that idea here as well.
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In our earlier work we studied the behavior of the deformation field near the corner of a polygonal
domain, where a singularity is likely but not certain. We concentrated on the corner behavior of the
compressed bonded block problem, i.e., the large axial compression of an incompressible, isotropic, elastic
block with free sides and clamped ends. We argued that the deformed free surface does not have a
monotonicaly increasing bulge in the vicinity of the corners of the block, but does so only away from the
corners in relation to the overall widening of the block. The coupling of the local constraint of volume
preservation together with the behavior of the deformation field near the corner gave rise to numerical
errors that very much complicated our work. Even though the numerical issues associated with the con-
straint of incompressibility have been satisfactorily resolved within the context of the classical linear theory,
it is still unclear how to accurately impose this restriction within the context of the nonlinear theory. In the
present work we relax the constraint of incompressibility and continue the study of the corner behavior
within the context of a representative compressible nonlinear elasticity theory.

Although several different nonlinear constitutive relations were considered during the course of this
investigation, we concentrate here on the particular class of harmonic materials. This class was introduced
by John (1960) and has been used by others, among which we cite Knowles and Sternberg (1975,1977),
Ogden (1977), Isherwood and Ogden (1977), Carroll (1988), and Steigmann and Pipkin (1988), in their
studies of the nonlinear theory. We analyze the bonded punch problem for a subclass of harmonic materials
and compare our results to those from the classical linear theory. Here, by the bonded punch problem we
mean the plane-strain problem for a half-plane which arises by requiring that a finite segment of the
boundary undergo a constant rigid normal translation by means of an axially loaded, bonded flat-ended
rigid punch. The remainder of the boundary, as well as the points at infinity, are supposed to be free of
traction in such a way that the half-plane is in equilibrium. The subclass of harmonic materials that we
adopt has the asymptotic constitutive structure proposed by Knowles and Sternberg (1975) when the sum
of the principal stretches, w;, tends to infinity. This asymptotic structure implies that a rectangular piece of
the material subject to homogeneous uni-axial tension maintains a nonzero width for any finite but arbi-
trarily large uni-axial stretch. Otherwise, our response function follows the behavior of the semi-linear
material, which was also introduced by John (1960). For this reason, we refer to our response function as
modified semi-linear. While John’s semi-linear material has a very simple constitutive structure that makes it
attractive for theoretical analysis and numerical computations, it yields deformation fields with spurious
oscillatory behavior in the vicinity of corners. Thus, we use it in this work only for comparison purposes
with the modified semi-linear material when w; is not large.

We are particularly interested in the behavior of solutions in the neighborhood of the corners of the
bonded punch. To study this, we employ the asymptotic analysis of Knowles and Sternberg (1975) in their
investigation of the bonded punch problem. We then present asymptotic expressions which do not have
spurious oscillations and which preclude the possibility of both self-intersection and local eversion of ma-
terial in the vicinity of the corners of the punch. We use these expressions to predict the free surface behavior
and we provide independent finite element computations which confirm these predictions and determine the
interior behaviors as well. We also present analogous asymptotic expressions obtained from the investigation
of the bonded punch problem within both the classical linear and semi-linear theories. These expressions
predict spurious oscillations for the deformation field and are used here to illustrate the limitations of these
theories. In addition, since the closed form solution for the linear theory is well-known and can be found in
the classical literature (e.g., Milne-Thomson, 1968; Muskhelishvili, 1963), we use the solution of the linear
problem to check and authenticate our computational scheme in the vicinity of the corners of the punch.

The asymptotic and computational analyses reveal the existence of three regions with different char-
acteristic behaviors in both the linear and nonlinear (semi-linear and modified semi-linear) theories. Very
close to the corners, we identify a singular region for which the stress field has a square-root singularity and
both the linear and the semi-linear materials predict self-intersection and local eversion of material. No
such anomalous behavior is predicted by the modified semi-linear material. Also, the deformed free surface
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profiles are very different in this region. As we move away from the corners, we identify an intermediate
region of lower gradients of deformation for which both theories predict a novel, but physically possible,
behavior of the corresponding deformed free surfaces. Far away from the corners, we identify a far-away
region for which the deformed free surface profiles become parallel. In particular, these surfaces are in-
distinguishable in the semi-linear and modified semi-linear cases.

In summary, in Section 2 we present preliminary developments that are useful throughout the paper. In
Section 3 we present constitutive inequalities that are essential in order for the general harmonic material to
be physically sensible. In Section 4 we present the mathematical formulation of the bonded punch problem
for the modified semi-linear material and we investigate the asymptotic behavior of the solution to this
problem in the vicinity of the corners of the punch. In Section 5 we display graphically our predictions
within both the linear and nonlinear theories, and illustrate that our asymptotic and computational results
are in very good agreement in the vicinity of the corners of the punch. In Section 6 we present some
concluding remarks.

2. Preliminaries

In this work we consider the planar deformation of an isotropic elastic body. We suppose that the
reference configuration of the body is an open, bounded set B € R?, and the particles X € B are defined by
their coordinates X = (X, X5) relative to a fixed orthonormal basis {i;,i,}. This reference configuration is
assumed to be an undistorted and stress-free natural state. The deformation of B is a smooth map y:
B — R?, and we let x = y(X) be the deformed position of the particle X. The coordinates of x = (x,x,) are
also relative to the basis {i;,i,}. The deformation gradient is given by F = Vy.

For a compressible, isotropic elastic body, the Cauchy stress is given by the constitutive relation (see
Fosdick and Schuler, 1969),

ow 2 oW
“wl i ® G)
where B=FF', ] = trB = |F\2, J =detF, and W = W(I,J) is the strain energy function per unit reference
area. Because the reference configuration B is a natural state we know that W (-,-) must satisfy

ow ow

The Piola—Kirchhoff stress is defined by
S = (det F)TF ' = Tcof F. (5)

One of the advantages of introducing this tensor is that the equation of equilibrium, in the absence of
body forces, can then be expressed as a differential equation in the reference configuration, i.e.,

DivS(X) =0, Xe¢B. (6)

Now, given a strain energy function, the mixed problem of elastostatics consists of finding a deformation
field y : B — R? whose stress field of Eqgs. (3) and (5) satisfies the equation of equilibrium (6) subject to the
boundary conditions

yX)=y(X), Xer,, (7)
S(X)m(X) =§(X), XeT,, (8)

where the boundary of B is decomposed according to 0B = I', U I, F W N F s = 0, and m(-) is the outer unit
normal field to B. If I', = () then the given traction field § must satisfy the usual global equilibrium con-
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dition that is essential for the existence of a solution. Using Egs. (3) and (5), we find that the Piola—Kir-
chhoff stress S has the reduced form

ow ow
It will be convenient later to replace I and J by the auxiliary invariants o, and w,, both positive and

defined by

wi f 14+2J, (10)
w,=1-2J
Then, Eq. (9) has the form

S = (F + cof F)®,, + (F — cof F)®,,,, (11)

where
1 oW (wy,w,),J (01, ®

Dy (@1, ) = o e, 62; (@, 2>>7 (12)
(o =1 or 2, not summed). It is then easy to see that Eq. (6) has the form

(F + cof F)V®,, + (Fcof F)V®,, + (P, + P,,) DivF = 0. (13)
In the reference configuration, (w, ;)= (2,0), and we shall set

P, (2,0) =0, a(aél—af“l)(Z,O) =+ u, ®,,(2,0) = pu. (14a,b,c)

The condition (14a) is a consequence of Eq. (4) while the conditions (14b,c) ensure that the strain energy
density reduces to the classical quadratic form for infinitesimal theory. The constants A and p are the Lamé
constants of the linear theory, and they satisfy the classical inequalities

u>0, A4+u>0. (15)

A harmonic material is characterized by the assumption that ¢,, = constant (John, 1960), and in this
case the strain energy density has the form

W(or, o) = 2u(p(wr) = J (o1, 0], (16)

where ¢ is a smooth function and, from Eq. (10), J(w;, m,) = (w7 — w3)/4. Of course, Eq. (14c¢) is trivially
satisfied and we observe from Eq. (12) that

_ 2.“ / 1
&, (01, ) _E[¢ (wl)—j] (17)
For convenience, we arbitrarily set ¢(2) = 1 so that by Eq. (14a,b) we have
U " i + 2/”'
2)=1 2) =———. 1
dQ=1.  ¢@Q="3 (18)
From Egs. (12) and (16), the Piola—Kirchhoff stress (11) has the final form
szzu{ [‘“”1)_1] cofF+¢’(“’1)F}. (19)
(O] w1

A property of this class of materials which we shall use later is that the principal stresses of the Cauchy
stress tensor, (11, 73), are related to the principal stretches associated with the deformation gradient, (d;, 0,),
through
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¢'(01)0, 1]7 )

; =1,2. (20)

11:2,ul

This follows from the Cauchy stress formula

T:2u{ [@—1 1+ MB}, (21)

1 [}

(see Eqgs. (5) and (19)), the spectral representation
B= 5%61 ® e + 5%02 & ey, (22)

and the identity w; = 0; + 0s.
In the next section we comment on some constitutive inequalities that are essential for a harmonic
material to be physically sensible.

3. Constitutive inequalities

In addition to the restrictions (18) imposed on the strain energy density ¢ for consistence with the
classical linear theory, we also impose restrictions on ¢ that arise from physical requirements concerning
the response of the material to elementary experimental observations. For example, let 6; = J, = ¢ in Eq.
(20) to obtain

112122152;1[@—1]. (23)

Under this circumstance, it seems reasonable to assume that dt/dé > 0, so that ¢'(w;)/w; is strictly
monotone increasing for 0 < w; < oo, i.e.,

d [‘f’/(wl)} > 0. (24)

dU)l 1

Next, consider a rectangle with sides parallel to a rectangular cartesian coordinate system in a state of
plane-strain, homogeneous uni-axial tension. The deformation y is of the form y, = §,X,, (x = 1 or 2, not
summed), where J; is the stretch along the axis of tension and ¢, is obtained from J; by imposing the
condition that the lateral sides of the rectangle are traction-free, i.e., 12(d1, ;) = 0 in Eq. (20). By requiring
that the rectangle gets thinner in the lateral direction while being extended axially, we are lead to the
conditions

(@) >1, C= lim GAGH)

W] —00 [

> 1. (25)

We also expect that for a finite but arbitrarily large stretch 6, the rectangle has non-zero width, i.e.,
0> > 0. This leads to the restrictions

¢ (1)
()1

from which, with Eq. (25), follows the explicit upper bound C = 1 for ¢'(w;)/w;. John (1960) was the first
to derive this upper bound. Later, Knowles and Sternberg (1975) argued for this bound and made extensive
use of C =1 in the derivation of an asymptotic expression for ¢ that is valid when w; — oco. Based upon

<1, c<l, (26)



A. Aguiar, R. Fosdick | International Journal of Solids and Structures 38 (2001) 4797-4823 4803

these last physical requirements concerning material response, we assume henceforth that the inequalities
(25) and (26) hold; in particular, C = 1.

Next, the values of w; for which ¢'(w;) = 0 play an important role in the analysis of the solutions of
equilibrium problems for harmonic materials. For example, if ¢'(w;) = 0 then by Eq. (20) the state of stress
is a hydrostatic pressure of magnitude 2, but yet the stretches need not be equal. Of course, this type of
material behavior is not realistic for an isotropic solid and must be avoided. John (1960) used the continuity
of ¢, the conditions (18), and the inequality (24) to show that any solution @, of ¢'(®;) = 0 must lie in the
range

0<o <2 (27)
On the other hand, it follows from Eq. (20) and the well-known Baker—Ericksen inequality
(t1 — 12)(01 — 9) > 0, forall §, > 0,9, # 0, (28)
that
¢ (w;) >0, forall w; > 0. (29)

Clearly, the inequality (29) is incompatible with a zero of ¢'(-) which satisfies @; > 0, and so the har-
monic material of Eq. (21) cannot represent an acceptable material behavior for all values of w;. Since
¢' (o) is strictly monotone increasing by Eq. (25a) for 0 < w; < oo, it follows from Eq. (27) that a suitable
range of values of w, for which Eq. (21) can possibly be used to represent an acceptable material behavior is
given by w; > @;. We shall use this observation to develop a specific constitutive model for a subclass of
harmonic materials in Section 4.

4. The bonded punch problem

Here we investigate the behavior of the solution of the plane-strain bonded punch problem in the vicinity
of the corners of the punch for a subclass of harmonic materials. In this problem, a finite segment of the
boundary of a half-plane is forced to undergo a constant rigid normal translation by means of an axially
loaded, bonded flat-ended rigid punch. The remainder of the boundary, as well as the points at infinity, are
to be free of tractions in such a way that the half-plane is in equilibrium.

4.1. The modified semi-linear material

For the subclass of harmonic materials, we propose a form for the smooth function ¢’ in Eq. (19) that
satisfies the inequalities (24)—(26) for all values of w; > @;, where @, is the unique solution of ¢'(;) = 0
which lies in the interval (27). The form is given by

/ dy(wr) if o <y,
¢'(on) = {

30
d);(wl) lf (O] 2 (2)1, ( )

where ¢! and ¢/ are such that ¢'and its derivative are continuous at w; = ®;. The value of &, > @, as well
as the functions ¢, and ¢/, are defined below.

To motivate the definition of the function ¢! in Eq. (30) we formally expand ¢’ in a Taylor series about
the reference configuration w; = 2, keep only the linear term, and use the conditions (18). Then, we take ¢!
to be this affine function, i.e.,

¢ (on) = i[mzmwl 26+ ) (31)
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It follows from the expressions (30) and (31) and the requirement that @, > @, that ¢'(w;) = 0 has the
unique solution

o =1+ £
b A+2u

(32)

In passing, the harmonic material characterized by Egs. (19) and (31) was introduced as the semi-linear
material by John (1960). This constitutive assumption does not model a generally acceptable material
behavior. To see this, we first observe from Eq. (31) that

p A+ 2p
Pllon) =2
’ (33)
w 2u )

We then recall from Egs. (25b) and (26b) that ¢/ (w;)/m; has the explicit upper bound C = 1, which, in
view of Eq. (33b), requires that we take /4 = 0. But this is in contradiction with the inequality (25a) which,
because of Eq. (33a), requires that 4 > 0.

We shall use for ¢/ in Eq. (30) the asymptotic constitutive structure proposed by Knowles and Sternberg
(1975), which is given by

B

!

¢ () =0 —a o (34)
where 0 < o < 1 and > 0. The condition that the material parameter § be positive is necessary for the
inequality (25a) to be satisfied. The material parameter « in Eq. (34) has the physical significance of being
the limiting value of the transverse stretch d, when a material with such a constitutive structure is subject to
a homogeneous uni-axial stretch J;, and J; tends to infinity. To see this, we set 1,(d;, ;) = 0 in Eq. (20),
recall Egs. (30) and (34), and we take the limit of the resulting expression as w; — oc.

We call the harmonic material characterized by Eqgs. (30), (31), and (34) the modified semi-linear material.
The material parameters « and f in Eq. (34) are chosen so as to solve the system of equations
@l (1) = @l (1), P! (1) = Pl (1), and we shall choose @; > 2 so that the modified semi-linear material
has the constitutive structure of the semi-linear material in the vicinity of the undistorted state where
w; ~ 2. To do this, we first note that

A
O(:1+<1—CZ)1>—,
. (35)
p=ar .
1 Z’u
But, because 0 < a < 1, it follows from Eq. (35a) that &; must satisfy
2<@1<1+%, (36)

and therefore we are restricted to choose 4 < u, which is a limitation on the constitutive structure of the
model. In this work we shall take, for illustrative purposes, A/u = 1/4 and &, = 4. The corresponding
(linearized) Poisson ratio v, which is related to the Lamé coefficients 1 and p through v = 2/[2(4 + u)], is
given by v = 0.10.

Finally, we use the expressions (19), (30), (31), (34), and (35) to define the Piola—Kirchhoff stress for the
modified semi-linear material. It is given by
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[i—z%”)}(F—i-cofF) + 2uF for w; <,
S = i1 N2 (37)
_{2y+ﬂ(lel>+i(%>](F+cofF)+2uF for v = 0.

The expression (37) is used in Section 4.2 to formulate the bonded punch problem in the nonlinear theory of
elasticity.

4.2. Asymptotic results within nonlinear theory

Here we present the mathematical formulation of the bonded punch problem in the nonlinear theory of
elasticity and we obtain asymptotic results concerning the solution of this problem in the vicinity of a
corner of the punch. For this, we assume that the material governed by Eq. (37) occupies the right half-
plane

B = {(X17X2)|X1 = O,Xz c (— O0,00)} (38)

in the undistorted state and that a segment X, € (—L, L) of the boundary of B is fixed while the remainder of
the boundary is traction-free, as shown schematically by the solid lines in Fig. 1.

The bonded punch problem consists of finding a planar deformation field y(X) = X +u(X) : B — R?
that satisfies the equation of equilibrium (6) for S given by Eq. (37) and F =1+ Au, subject to the
boundary conditions

U(X) =0, X,=0, X,¢ (_LvL)v (39)
SX)ii =0, Xi=0, [X;|>1L, (40)

the condition that the stress field must vanish at infinity,
T(X) =o0(l) as|X|— oo in B, (41)
and the condition that the displacement field be bounded in the vicinity of the corners of the punch,
u(X) =0(1) as |[X £ Liy] — 0. (42)
Recall that the Cauchy stress T is related to S through the expression (5). In addition, we require that

L
/ 711 (0,X)dXx, = —P, (43)
—L
where P is the given punch load — taken positive for an indenting punch, which means that the elastic half-
space is displaced into the punch from right to left, as shown schematically by the dashed lines in Fig. 1.
We now turn our attention to the neighborhood of the upper corner of the punch and describe the
asymptotic results concerning the behavior of the solution in this neighborhood. Our conclusions here will
be compared later with the results of our independent computational scheme. Relative to a translated polar
coordinate system (R,®) centered at the upper corner (0,L) with ® measured clockwise negative from the
positive X;-axis, we introduce the semi-circular neighborhood of the corner in the right half-plane

N={X=(—Rsin@® Rcos@) eB:0<R<R,—n<0O <0}, (44)

where R is the radius of the semi-circle. The corner problem consists of finding the deformation field y:
N — R? that satisfies

DivS=0 in N, (45)
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Fig. 1. Two-dimensional version of the bonded punch problem.

where S is given by Eq. (37) with F = Vy = | + Vu, together with prescribed homogeneous displacement
and traction boundary conditions on either side of the corner in the interval R € (0,R), viz.,

R,—7m) =0,

u( ) (46)
(SCQ)QZO = 0,

where ez = X/|X| and e; - €9 = 0. Away from the corner, on the circular arc R = R, we impose
Y(R,0) =y>(0) for —n< O <0, (47)

where y™ is the deformation field solution of the bonded punch problem evaluated on R = R. Since we need
to solve the bonded punch problem in B in order to determine y* on R = R, this field is not known a priori.
Hence, we can only expect to find a general form of the solution of the corner problem in terms of y*.
While we have not been able to determine a direct asymptotic expansion of the solution y of the non-
linear partial differential system (45), (46), and (37) in the neighborhood of the corner of the punch, we have
managed to show, by following an asymptotic analysis similar to Knowles and Sternberg (1975), that if
w; — oo as R — 0 (i.e., if at least one principal stretch becomes unbounded at the corner) then the non-
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linear system can be replaced (formally) by a particular linear partial differential system in a sufficiently
small neighborhood N. The solution of this approximate linear system has the (complex variable) form

z(R,0) = R'*U(O) + RV(O) + o(R), —-n<OK0, (48)
where
U(®) =acos(0/2), —-n<O<KO0, (49)
. 2ioa . . i0/2
V(@):1cos(‘9—&-m[cos@vL sin@ —ie?], -n<O<0, (50)
a

and a is a complex constant to be determined using the boundary condition (47). Lacking a proof, we shall
assume that the asymptotic behavior of y is characterized by z and write

Y(R,0) =y (R,0) + (R, O)

(R, 0) ~ R'?U(O) + RV(O) +0o(R), —-n<O<0. 1)

In Section 5 we shall compare the asymptotic expression (51) with our independent numerical solution of
a discrete version of the bonded punch problem. We also shall display graphically the behavior of the
Jacobian determinant J = detVy along the deformed free surface. For the deformed free surface predicted
by Eq. (51) with ® = 0, we have the asymptotic expression

J(R,0) ~ #R—W +o(R71?), (52)
which is easily obtained from Eq. (51) by employing the well-known expression
_ /1 Oy

Since we know from Section 4.1 that o > 0, it follows from Eq. (52) that J(R,0) > 0 in the neighborhood
of the upper corner of the punch.

Using the semi-linear constitutive assumption, given by Eq. (19) together with Eq. (31), Aguiar (1998)
derived an asymptotic expression for the solution of the Egs. (45) and (46). This derivation is also based on
the assumption that w; — oo as R — 0, and, analogous to Eq. (51), it is given by

H(R,0) ~ fi(O)R” +R| f2(0) + f(O)R”| + o(R), (54)

where f;, i = 1, 2, 3, are smooth functions of @. The exponent b = B1 + i[§2 in Eq. (54) is given by

~ 1 . logk

b= 3 +i Pt (55)
where the constitutive parameter k is defined in terms of the Poisson ratio v as

. 1

K—E, 0<v<0.5. (56)

The imaginary part Bz of the exponent b in Eq. (55) yields an oscillatory behavior for the deformed free
surface. Although the corresponding oscillatory part of the asymptotic expression (54) is bounded and
smooth up to the boundary, its presence is related to the loss of global and local invertibility of the de-
formation field.

To characterize the loss of global invertibility, Aguiar (1998) showed that the deformed free surface
behaves like a spiral that winds around the corner in the clockwise direction as the corner is approached.
Since the punch surface is fixed and the deformation field is continuous up to and including the boundary,
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the deformed free surface intersects the punch surface, which is not acceptable. Also, internal material lines
in the deformed configuration overlap themselves in the vicinity of the free surface. We shall comment more
on this anomalous behavior in the Section 4.3 when we briefly consider a similar anomalous behavior of the
deformed free surface within the classical linear theory of elasticity.

To characterize the loss of local invertibility, which corresponds to negative values of the Jacobian
determinant J associated with the expansion (54), we first use this expansion in Eq. (53) to find that
2

R [1 - e21°g"] FOR™MY, (57)

al

J(R,0) ~ T

where a is a complex constant to be determined from the boundary condition (47). Since & > 1 from Eq.
(56), it follows from the expression (57) that J (R,0) < 0 in a small neighborhood of the corner. Aguiar
(1998) showed that the negative Jacobian determinant represents mathematically the local eversion of
material in the vicinity of the deformed free surface and that both, the negative Jacobian determinant and
the local eversion of material, are the manifestation of C > 1 in Egs. (25b) and (33b) for the semi-linear
material. Of course, the anomalous behaviors of self-intersection and local inversion of material are not
physically acceptable and are only included in this work to illustrate the limitations of the semi-linear
constitutive theory.

In the Section 4.3 we consider the solution of the bonded punch problem within the context of classical
linear elasticity theory and we present the corresponding asymptotic expression for the deformed config-
uration of the free surface in the vicinity of the upper corner. Results obtained from this section will be used
in Section 5 to validate our computational scheme and to draw comparisons to the results obtained from
the nonlinear theory.

4.3. Asymptotic results within linear theory

Here we want to find a planar displacement field u : B — R that satisfies the equation of equilibrium (6)
and the conditions (39) through Eq. (43), where B is the half-plane given by Eq. (38), and both S and T are
given by the linear constitutive relation

S =T = ADiv u+ u|[Vu+ (Vu)"]. (58)

Now, let u = u; + iu, be the complex representation of the displacement field u defined in B and let
vt (X2) = limy, o v(X7, X2) be the limit of a complex function v as X, tends to zero from the right side of the
punch. The closed form solution for the derivative of the displacement field with respect to X, on the
unstressed parts of the boundary is

ou \" (k+1)P ~1/2+y ~1/2-iy
(6_)(2) (Xo) = _W(XZ +L) (Xo—1L) : (59)
(Muskhelishvili, 1963) where
PR TN PP (60)
A+
for a state of plane strain, with v being the Poisson ratio, and
logx
)= o (61)

Next, we integrate the expression (59) with respect to X, X, > L, and impose the condition u(0,L) = 0.
We then find that
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. k+ 1P [ R
u(R) =u'(Xy) = ! ) (

bo

where R = X, — L, F is the Gauss hypergeometric function, and
by=n+i-iy, n=0,1,... (63)

By expanding F in a Taylor series and substituting the resulting expression in Eq. (62), we obtain the
asymptotic expansion

a(ze):-%(%)bo{i—@5+ow) (64)

in the vicinity of the upper corner of the punch. The deformed configuration of the free surface is then given
by

F(R) = R+ i(R). (65)

Observe from Egs. (63)—(65) that, for R < 2L, the first term of # in Eq. (64), which is of the order
O(R'?), dominates and determines the behavior of the deformed free surface. Since the derivative of this
term is singular, the region in an infinitesimal neighborhood of the corner will be called the singular region.
As we move away from the corner and towards the region R/(2L) = O(1), non-singular terms of the order
O(R) determine the behavior of the deformed free surface. For this reason, the region away from the corner
will be called the far-away region. When both the singular and non-singular terms are of equal strength, a
third region, called the intermediate region, exists between the singular and the far-away regions. It turns
out that interesting structure develops in the intermediate region not only within the linear theory but also
in the nonlinear case presented in Section 4.2. Details about these structures will be given in Section 5 when
we display graphically our asymptotic and computational results for the deformed free surface within both
the nonlinear (i.e., semi-linear and modified semi-linear) theory (recall Egs. (51) and (54)) and the linear
theory.

Now, the imaginary part of the exponent by, given by —y in Eq. (63), yields an oscillatory behavior for
the position of the deformed free surface as given by Egs. (64) and (65) in the vicinity of the upper corner.
To investigate this behavior further, we observe that the complex function

( R ) / = ¢ loglR/(L)] e g R <1, (66)

2L 2L
corresponds to a unit circle in the complex plane. Using Eqgs. (60) and (61), we also observe that with one
anti-clockwise revolution on this circle the value of R decreases from R = 2L to R = 2Le >"’. Since
0 <v<0.5 for compressible materials commonly used in engineering, we have from Eq. (60) that
1 <k <3 and, with Eq. (61), that 0 < e=2%/7 < ¢~(9’/1e3 ~ 2.5 10~ This range for e~>"/" becomes
important later in the visualization of the deformed free surface, because, as we move from the far-away
region to the singular region, different zoom-ins of the free surface at different scale distances are necessary
to visualize the behavior of the free surface in the vicinity of the corner.

The expression (66) now shows that the complex function

R\ R
_ e IoglR/QL] e < — o ] 67

(ZL) S 2L (67)
corresponds to one revolution of a spiral with focus at the origin R = 0. Hence, it follows from the first term
of the asymptotic expansion (64) that the free surface winds around the upper corner of the punch in the
anti-clockwise direction as R varies in the singular region. To characterize the interpenetration of matter in
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the vicinity of this corner, we only need to recall that the displacement field is continuous up to and in-
cluding the boundary and vanishes on & = —m.

Performing a similar analysis on the asymptotic expression (54) when @ = 0 we find that, for a semi-
linear material, the term

R i iB, logR —2n/p, R
<2L> e , € <2L<1, (68)
where ﬁz is the imaginary part of Eq. (55), corresponds to one revolution of a spiral with focus at the origin
R =0. Since k¥ > 1 in Eq. (56), , > 0 in Eq. (55) and the spiral winds around the corner in the clockwise
direction as R — 0. Since the displacement field is continuous up to and including the boundary and vanishes
on @ = —, the free surface intersects the punch surface, which characterizes interpenetration of matter.

Observe that the exponent b in Eq. (55) and the constitutive parameter # in Eq. (56) are analogous to,
respectively, b, in Eq. (63) for n = 0 and « in Eq. (60). Notice that the parameter « is sensitive to the choice
of v and changes significantly the spiral-like behavior of the free surface from the corresponding solution of
the linear problem. In the linear theory, as the Poisson ratio v varies from 0 to 0.5, the free surface varies
from a configuration with infinite oscillations to one with non-oscillatory behavior; for the semi-linear
material, it varies from a configuration with non-oscillatory behavior to one with infinite oscillations.

We emphasize that no such anomalous oscillatory behavior is predicted by the modified semi-linear
material, because the exponents of R in the expression (51) have no imaginary parts.

Similar to our work of Section 4.2, we find, with the help of the expressions (53) and (64), that

J(R) = J(R,0) ~ Jy(RV:(R) + O(R™7), (69)
where

Ji(R) = (x — 1) + 2cos <2ylog(2RL)>, (70)

- (k4 1)P?

HR) = (4um)*2LR 7y

(Aguiar, 1998). Since 1 < «k < 3, it follows from Egs. (69)—«(71) that J(R) oscillates between positive and
negative values as the corner is approached.

In the Section 5 we introduce the variational equations used in our computational scheme, which is
based on the numerical method presented by Aguiar and Fosdick (2000), and we compute a numerical
solution to the bonded punch problem within nonlinear elasticity. We then compare our numerical solution
with results obtained from the asymptotic expressions (51) together with Egs. (49) and (50) in the neigh-
borhood of the upper corner of the punch.

5. Asymptotic versus computational results

Our computational procedure is based on a classical Galerkin formulation of the bonded punch
problem. It applies to both the linear and nonlinear theories. In the nonlinear theory, we first define a
I-parameter family of kinematically admissible deformations by

S ={y, € W2(B) :y,(X) =X+ A[y(X) - X] for X eTI,}, (72)

where A € R. We then use the definition (72) together with a continuation technique described in Aguiar
and Fosdick (2000) to construct a continuous path of states through the solution of a problem at A =1,
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starting from the trivial solution y, = X at 1 = 0. A path of states is the set of all (y;,4) € S; x [0, 1] that
satisfy the variational equation

R(y;, A) = a(y,,v) — A5,v) =0, Vve W (B), (73)
where, for harmonic materials,
aly,,v / ¢wa:j’ (F, + cof F,) - Vvdd (74)
and
8,v) = /r s-vdS. (75)

Here, W;*(B) denotes the set of all functions in W'?(B) which vanish on the part I, c aB these are
referred to as kinematically admissible variations. Also, recall from Eq. (10) that (w;,)” = [F,|* + 2det F,
where F, = Vy,, and from Eqgs. (7) and (8) that I', and I'; are the regular parts of the boundary 0B where
the deformation y and the traction § are 1mposed respectively.

The variational problem in nonlinear elastostatics that corresponds to the mixed problem (6)—(8), and
(19) consists of finding a continuous path of states (y,, 1) € S, x [0, 1] so that A*(y,,A) = 0 in Eq. (73). We
solved the corresponding discrete nonlinear problem by means of the computational scheme described in
Aguiar and Fosdick (2000).

The domain of discretization By, C B is finite and composed of isoparametric elements P2. In particular,
we use a fan of these elements in the vicinity of the upper corner. We find that this finite element mesh
allows for a better interpretation of our computations in the vicinity of the corner and also it yields an
improvement over computations which use rectangular elements. The points of B at infinity are replaced by
points on the boundary of B, whose distances from the origin are at least two orders of magnitude greater
than the width 2L of the punch surface.

In Fig. 2 we show both material lines and the free surface shape close to the upper corner of the bonded
punch in the undistorted state. Observe the high level of mesh refinement in the vicinity of the corner when
compared to points away from the corner. The thick white line represents the punch surface and the black
line represents the scale distance in terms of the width of the punch.

On the right side, the gray scale represents values of the Jacobian determinant J = det F. Based on this
gray scale, we will compare the values of J on the free surface obtained from the asymptotic representations
(52) of the modified semi-linear constitutive assumption, Eq. (57) of the semi-linear constitutive assump-
tion, and Egs. (69)—(71) of the classical linear theory, with the corresponding values obtained from our
computational scheme. Values of J greater than +2 are represented by the white color, while values of J
smaller than —2 are represented by the black color. In particular, notice that both the material lines and the
free surface shape are gray in the undistorted state. We shall track both the positive and negative values of
the determinant in the computations because this illustrates more clearly the structure of the solution in the
neighborhood of a singular corner point. While an everywhere positive determinant is acceptable, the
existence of negative values is related to self-intersection and keynotes a deficiency in the constitutive
model. A plot of the indenting punch load P versus the horizontal displacement U imposed on the
boundary of By, is shown at the upper right corner.

When we hold fixed the number of elements in the radial direction and increase the number of elements
in the polar angular direction, we observe the following in both the linear and nonlinear cases:

e For the same horizontal displacement U imposed on the boundary of By, the deformation field con-
verges everywhere in the domain, including the vicinity of the corner;
e The traction-free conditions are closely satisfied everywhere on the boundary of the discrete domain By,.
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Fig. 2. Neighborhood of the upper corner of the punch.

We increase the number of elements in the radial direction by considering a sequence of discretizations
that starts with a coarse mesh for which the closest node to the upper corner is at a distance of the order
O(107!''L). The other meshes are obtained from the coarse mesh by both doubling the number of nodes in
the R-direction and then applying a nonlinear function to the distribution of nodes in the R-direction in
order to increase the density of nodes in the vicinity of the corner. By following this procedure we arrive at
the fifth and final discretization of the sequence with the closest node to the upper corner being at a distance
of the order O(107"L).

When we increase the number of elements in the radial direction and consider the discrete nonlinear
problem, the numerical scheme converges for a moderate horizontal displacement U imposed on the
boundary of B,. When U exceeds a cut-off value U, the continuation technique described in Aguiar and
Fosdick (2000) fails to produce an accurate solution to this problem. The loss of accuracy seems to be
related to the presence of a material instability that occurs in the vicinity of a particular point on the
deformed free surface. At this point, which is at a distance of the order O(107°L) from the upper corner, we
have observed that w; — @; as U — U,. We will comment more on this later in this section.

In the linear case, the displacement field is proportional to the punch load P (see Eq. (62)). Thus, it
suffices to calculate the numerical solution of the discrete linear problem once for a given horizontal dis-
placement on the boundary of By, say U, and then multiply this solution by the factor U / U in order to
obtain a numerical solution of the discrete linear problem for an arbitrary value of U.

5.1. Linear theory

We now describe graphically our asymptotic and computational results from linear theory. Recall
from Section 4.3 that the solution of the linear bonded punch problem is well-known and can be found in
the classical literature (e.g., Milne-Thomson (1968) and Muskhelishvili (1963)). Thus, we use the solution
of the linear problem to check and authenticate our computational scheme in the vicinity of the corners
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of the punch. We also compare this solution later to the solution of the nonlinear bonded punch
problem.

Again, our computations are based on the finite element method described in Aguiar and Fosdick
(2000). We first consider the deformation of the free surface in the vicinity of the upper corner, and then
show the corresponding behavior of internal material lines and the free surface shape in the neighborhood
of this corner. Finally, we zoom in further and show the free surface shape at small scale distance, order
O(107'°L), from the corner of the punch, where we recall that 2L is the width of the punch surface. At
smaller scales the pattern is similar as it follows a logarithmic spiral behavior.

Consider the free surface shape near, order O(107°L), the upper corner of the punch as predicted by both
the asymptotic solution (64) and the numerical solution of the discrete linear problem. In Fig. 3 we show a
sequence of frames that illustrate the self-intersecting material behavior in the neighborhood of this corner
for increasing values of the punch displacement U. In Fig. 3a we see the undistorted state of the punch in
the vicinity of the upper corner. In Fig. 3b the free surface shape is indicated by two lines; a thick line
obtained from the asymptotic solution and a thin line obtained from the numerical computations. Ap-
proximation errors in both the asymptotic and the computational procedures account for the difference
between the two solutions which, according to the scale distance, is small. Both predictions show that
material is drawn under the punch and that as the corner is approached, detF is first negative and then
positive again. The transition region between negative and positive values is very thin and is not perceptible
in this image. For a moderately large load, Fig. 3c shows that the numerical solution becomes cusp-like.
Now it is possible to observe a smooth transition region between positive and negative values of detF.
Notice also the good agreement between the asymptotic and computational results with respect to both the
surface shape and the values of detF. In Fig. 3d the cusp becomes looped and the free surface intersects
itself. The good agreement between the asymptotic and computational results is more visible. In Fig. 3¢ we
change the scale from 2 to 8 x 107°L to better illustrate the intersection of the free surface with the punch
surface. The good agreement between the asymptotic and computational results is observed once again. In
the last figure of the sequence, Fig. 3f, we show that the intersection of the free surface with the punch
surface persists as the load increases.

Next, in Fig. 4, we show a sequence of frames that illustrates the behavior of both internal material lines
and free surface shape near, order O(1073L), the upper corner of the punch as predicted by our numerical
computations. This sequence of frames corresponds to the sequence shown in Fig. 3, and both were ob-
tained with a coarser level of mesh refinement than shown in Fig. 2. This mesh refinement suffices to
produce very accurate results at low computational cost. In Fig. 4a we show the flat, rigid, bonded punch
(thick white line), the free surface (thick gray line), and the material lines (thin gray lines) of the half-plane
at zero punch displacement. In Fig. 4b material is drawn under the punch and the free surface intersects
internal material lines of the half-plane. This anomalous intersection characterizes eversion of material in
the vicinity of the free surface; notice from the shades of dark and light gray that det F also changes sign
near these places of eversion. In Fig. 4c the cusp-like shape of the free surface for a moderately large load is
clearly intersecting internal material lines of the elastic half-plane and, again, this intersection is related to a
nearby change of sign of det F. In Fig. 4d the cusp becomes looped and the free surface intersects itself
inside the elastic region. In Fig. 4e we change the scale from 2 to 8 x 107°L to show the intersection of both
the material lines and the free surface with the punch surface. In the last figure of the sequence, Fig. 4f, we
see that the intersection of both the material lines and the free surface with the punch surface persists.

In the sequence of Fig. 5, we show the asymptotic behavior (i.e., Egs. (64) and (65)) and the numerical
solution of the free surface shape at small scale distance, order O(107'°L), from the upper corner of the
punch. Both predictions are indistinguishable at this scale distance. The undistorted state is shown in Fig.
5a and b we see the free surface shape for a small punch displacement and we show that detF alternates
between positive and negative values as the corner is approached. Fig. 5c is the same as Fig. 3c but at five
orders of magnitude closer to the corner. The cusp is very far away at this magnification and cannot be
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Fig. 3. (Classical linear theory) Anomalous behavior of the free surface shape for increasing normal punch displacements.
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Fig. 5. (Classical linear theory) The behavior of the free surface shape at small scale distance, order O(107'°L), from the corner of the
punch.

seen, but a spiral-like shape at the corner can be inferred by comparing these figures. Fig. 5d indicates that
the spiral-like behavior of the free surface persists at a larger load.

Based upon the asymptotic expression (64) together with Eq. (65), and the exposition above, we identify
the following three regions of the linear elastic behavior in the vicinity of the upper corner of the punch:

o A singular region consisting of points very close to the corner. In this region, R < 2L, the first term of & in
Eq. (64) dominates and, with Eq. (65), it determines the placement of the deformed free surface. The de-
formed free surface has a spiral-like shape and the Jacobian determinant oscillates between positive and
negative values as the corner is approached.

e A far-away region consisting of points sufficiently (but not arbitrarily) far from the corner, so that the
first term in Eq. (65), i.e., R, and the higher order terms in Eq. (64), O(R") for B, > 3/2, dominate
and determine the behavior of the deformed free surface. In the far-away region, the deformed free sur-
face has the shape depicted by the dashed line in Fig. 1, which is on the left side of the punch surface.

e An intermediate region consisting of points not contained in the first two regions. In this region, both
singular and non-singular terms determine the placement of the deformed free surface and predict that
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this surface must be on the right side of the punch surface. The cusp-like shape of the free surface shown
in Fig. 3c originates from points belonging to the intermediate region.

In summary, as the corner is approached, the deformed free surface is first on the left side of the punch
surface for points in the far-away region, then it comes to the right side of this surface for points in the
intermediate region, and finally it winds around the upper corner of the punch in a counter-clockwise
direction for points in the singular region. Although the spiral-like behavior of the deformed free surface in
the singular region is not acceptable, the non-monotone behavior observed in the other two regions is
possible. As we shall see later in this section, a similar non-monotone behavior is also predicted by the
modified semi-linear theory.

5.2. Nonlinear theory

Here, we interpret graphically our asymptotic and computational results for the solution of the bonded
punch problem within the nonlinear theory of elasticity for the modified semi-linear constitutive assump-
tion (37).

First, we check our computational scheme for its ability to approximate well the stress field in the vicinity
of the free surface. For this, let us consider a small material square with sides of length ¢ and let one side lie
on the undistorted free surface boundary @ = 0 while the remainder of the square cuts orthogonal to the
free surface and lies within Bj. Since the outer unit normal field to y(By) on the deformed free surface is a
principal direction of the Cauchy stress T, we expect that, for y sufficiently smooth and for a sufficiently
small ¢ > 0, the planar state of stress for this material square is nearly one of uni-axial tension (or com-
pression) in its distorted state. We have numerically computed the Cauchy stress field in y(By,) and we have
found that the state of stress in the vicinity of the deformed free surface is indeed close to a state of uni-axial
tension (or compression) for every sufficiently small material square situated along the free surface as
described above.

In passing, we recall from Section 3 that while the inequalities (25) were motivated by our expectation
that a rectangle thins transversely as it is stretched axially, the inequalities (26) were motivated by our
further expectation that for a finite but arbitrarily large stretch J, the rectangle maintains a non-zero width.
The existence of a stretch 0, for which the width of the rectangle vanishes is then a manifestation of the
inequality C > 1. In fact, when C > 1 the lateral sides of a sufficiently stretched rectangle can be made to
reverse their relative positions and the Jacobian determinant will become negative. The change of sign of
the Jacobian determinant is then associated with the local eversion of material for a rectangle under uni-
axial tension. This fact about uni-axial tension together with our analysis of the state of stress in the vicinity
of the deformed free surface lead to the conclusion that a negative Jacobian determinant represents a local
eversion of material in this vicinity and that both are the manifestation of setting C > 1 in the constitutive
equation for harmonic materials.

We have numerically computed the sum of the stretches w; in y(B;) and we have found that w; is very
large in the vicinity of the deformed free surface and very close to the punch corner. Hence, we have in-
dependently verified (apart from the asymptotic results in Section 4.2) that self-intersection should not be
expected in the case of the modified semi-linear material because C = 1 in that case, and it should be ex-
pected in the case of the semi-linear material because there we have C =1+ A/(2u) > 1.

We now turn our attention to the asymptotic and computational results for the solution of the bonded
punch problem using the modified semi-linear constitutive assumption (37). Recall from Section 4.2 that the
second-order approximation of the (complex) deformation field y is given by the first two terms of the
asymptotic expansion in Eq. (51) together with both Egs. (49) and (50). This approximation is fully de-
termined with the exception of the complex constant a. To estimate a, we first found the best curve fitting to
a set of points on the deformed free surface as predicted by our numerical computations. The derivative of
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the complex function that corresponds to this curve fitting has a square-root singularity in a small
neighborhood of the corner. The factor multiplying the term R'/? in this complex function was then taken as
the constant a.

In Fig. 6 we show the form of the free surface according to both the second-order asymptotic formula of
Eq. (51) together with Egs. (49) and (50) and the computational predictions at the scale distance O(1071°L).
The two graphs lie on top of one another, especially in the region of large values of detF. In Fig. 6¢ and d
we show both the free surface shape and the internal material lines as determined from our computational
finite element method for the same scale distance O(107'°L). The computations show the existence of a
singular region in a neighborhood of the corner, for which large spatial changes of deformation occur and
for which detF is indeed positive.
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Fig. 6. (Modified semi-linear theory) Material lines and free surface shape at scale distance O(1071°L).
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In Fig. 7 we reduce the magnification by four orders so that an intermediate region of the corner can be
observed. In Fig. 7a, we see that the second-order asymptotic approximation of the free surface, repre-
sented by the thick line, agrees well with our finite element computations, represented by the thin line, in the
singular region, characterized here as the region where detF > 2. But, as we move away from the corner,
our computations show a sharp change of curvature of the free surface in the intermediate region. In fact,
this sharp change of curvature occurs at the first point in the intermediate region where w; approaches @y,
where @, satisfies ¢'(®;) =0 and is given by Eq. (32). The significance of this is that the equations of

0.002
Ay 0.001 l :
0.000

g f 8

0.002

2e-06
U

Force P versus
Displacement U.

2
l'_

(0]
-1
-2

det F

a) Free Surface Shape Large P

2e-06

Force P versus
Displacement U.

2:
11

0
-1
-2

det F

b) Material Lines Large P

Fig. 7. (Modified semi-linear theory) Material lines and free surface shape at scale distance O(107°L).



4820 A. Aguiar, R. Fosdick | International Journal of Solids and Structures 38 (2001) 4797-4823

P
o1
3
P

ooo

g

o o o o <
QR Q Q Q Q O
= c Qo Q =
1e-10 S le-1 o
U U
Force P versus Force P versus
0 Displacement U. 0 Displacement U.
2 2
1| 1|
0 0]
- -1
o =
det F det F
-10 -10
0(10 ) - Small P O0(10 ) - Larger P
0. 8001
0.001
R . m 0% [
o M < o o &
Q Q Q Q Q Q
1le-08 2 e 2508 SR
U U
Force P versus Force P versus
0 ’ Displacement U. 0 Displacement U.
1| 1|
0] 0]
= -1
2 -2
det F det F
-8
O(10 ) - Small P - Larger P
0.008 | 0.00% l -
~ Ay
o oo o o <
cC Q QL Q
- (SRR SR &)
2e-06 g g g 2e-06 -
U U
Force P versus Force P versus
0 | Displacement U. 0 Displacement U.
2 2
1§ 1
(0] 0]
251 -1
2 B
det F det F
_6 —
O(10 ) - Small P O0(10 ) - Larger P

Fig. 8. Linear versus nonlinear (semi-linear and modified semi-linear constitutive assumptions) asymptotic solution.



A. Aguiar, R. Fosdick | International Journal of Solids and Structures 38 (2001) 4797-4823 4821

equilibrium suffer a loss of strong ellipticity at such a point, as Knowles and Sternberg (1977) have shown.
Note that the Jacobian determinant det F is strictly positive in the vicinity of this point. In this intermediate
region the modified semi-linear constitutive assumption (37) actually corresponds to the semi-linear form
and it predicts possible behavior. Of course, in the singular region neighboring the corner the semi-linear
constitutive assumption is not an acceptable model for studying the material behavior and we introduced
the modified semi-linear form for that reason.

In Fig. 8 we compare the form of the free surface as predicted by our finite element computations for the
linear, the semi-linear, and modified semi-linear theories. To do so, we have chosen the same Lamé coef-
ficients 4 and p in these theories, so that the modified semi-linear theory reduces to the linear theory for
small displacement gradients. Note that we have included a calculation for the semi-linear constitutive
assumption, as well, even though we know that it fails to represent reasonable material behavior in the
singular region neighboring the corner. The free surfaces for the linear, semi-linear, and modified semi-
linear materials are represented by thin, medium, and thick lines, respectively. At the scale distance of order
O(1071°L) and for large P, the shapes of the deformed free surfaces differ considerably. Also, the Jacobian
determinant detF is large (|det F| > 2) for all three materials. It changes sign for the linear material, is
negative for the semi-linear material, and is positive for the modified semi-linear material. Clearly, a
negative Jacobian determinant, which corresponds to interpenetration of matter, is not physically ac-
ceptable, and so both the linear and semi-linear materials are not reasonable models for studying the be-
havior of an elastic material in the vicinity of a corner. Nevertheless, the deformed free surfaces, while very
different in the so-called singular region very close to the corner, become nearly parallel to each other as we
move away from the corner into the far-away region where detF ~ 1. In particular, the deformed free
surfaces for the nonlinear materials (i.e., the semi-linear and modified semi-linear) become indistinguish-
able. Finally, we observe that while physical intuition might suggest that the free surface should deform to
the left of the indenting punch surface in Fig. 8, the deformed free surface for all three models is seen to be
on the right side of the punch surface when viewed at a scale distance of order O(107°L) and for large P.

6. Conclusion

We have compared asymptotic approximations and computational predictions obtained from the so-
lution of singular problems in elasticity theory. We have concentrated our attention on the singular
structure of the bonded punch problem in the three cases of linear, semi-linear, and modified semi-linear
theories. In these cases, the computational results are in good agreement with the asymptotic approxi-
mations.

We have identified three regions with different characteristic behaviors in these theories.

o In the singular region neighboring the corner of the punch, these theories predict a square root singularity
for the stress field. The linear and the semi-linear materials predict an oscillatory behavior of the corre-
sponding deformation fields, which yields spiral-like behaviors for the deformed free surfaces, and neg-
ative Jacobian determinants, which are related to a spurious self-intersection anomaly. The orientations
of the spirals and the material constants are, however, different. The modified semi-linear material does
not share the anomalous oscillatory behavior and it satisfies det F > 0 everywhere in the vicinity of the
corners of the punch.

e In the far-away region, these theories predict similar regular behavior. In particular, the free surface
shapes for the semi-linear and modified semi-linear materials are indistinguishable in this region.

o In the intermediate region, these theories predict that the deformed free surface is depressed lower than the
flat punch surface, itself. This curious non-monotonic behavior of the free surface is analogous to the non-
monotonic behavior of the deformed free surface of the compressed bonded block near the end plattens as
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mentioned in Section 1. The modified semi-linear theory predicts a sharp change of curvature of the free
surface for a sufficiently large punch load. We believe that this sharp change is related to the onset of a
material instability.
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